# Golem95: calculating tensor integrals with up to six external legs numerically

Gudrun Heinrich

University of Durham

Institute for Particle Physics Phenomenology



in collaboration with T.Binoth, J.-Ph.Guillet, E.Pilon, T.Reiter

# **Exploring the TeV scale**

# with LHC (or the Tevatron already?) we are entering a New Era in Particle Physics!





#### The LHC

- will shed light on the origin of mass ("Higgs mechanism")
- may discover supersymmetry/extra dimensions, provide information about dark matter

#### The LHC

- will shed light on the origin of mass ("Higgs mechanism")
- may discover supersymmetry/extra dimensions, provide information about dark matter
- 1 Terabyte of data every day
- $\sim 1000$  hadronic tracks in detector per event proton remnants or high energy interactions between quarks/gluons (QCD)

#### The LHC

- will shed light on the origin of mass ("Higgs mechanism")
- may discover supersymmetry/extra dimensions, provide information about dark matter
- 1 Terabyte of data every day
- $\sim 1000$  hadronic tracks in detector per event proton remnants or high energy interactions between quarks/gluons (QCD)

| process                            | events/sec |            |
|------------------------------------|------------|------------|
| QCD jets $E_T > 150  \mathrm{GeV}$ | 100        | background |
| $W \rightarrow e \nu$              | 15         | background |
| $t \overline{t}$                   | 1          | background |
| Higgs, $m_H \sim 130\text{GeV}$    | 0.02       | signal     |
| gluinos, $m\sim 1{\rm TeV}$        | 0.001      | signal     |

⇒ enormous backgrounds!

we might see very clear signatures

e.g. 4 highly energetic leptons



we might see very clear signatures e.g. 4 highly energetic leptons



we might have to work hard to claim a discovery e.g. light Higgs boson  $m_H \sim 120\,{\rm GeV}$ 

we might see very clear signatures
 e.g. 4 highly energetic leptons



- we might have to work hard to claim a discovery e.g. light Higgs boson  $m_H \sim 120\,{\rm GeV}$ 
  - $\Rightarrow$  be prepared!
- we first have to "rediscover" the Standard Model, control jet energy scale, underlying event, ...
- maximal control of theory expectations for signals and backgrounds is required
- measuring the backgrounds is not always possible e.g. neutrinos in final state

we might see very clear signatures
 e.g. 4 highly energetic leptons



- ullet we might have to work hard to claim a discovery e.g. light Higgs boson  $m_H \sim 120\,{
  m GeV}$ 
  - $\Rightarrow$  be prepared!
- we first have to "rediscover" the Standard Model, control jet energy scale, underlying event, ...
- maximal control of theory expectations for signals and backgrounds is required
- measuring the backgrounds is not always possible e.g. neutrinos in final state
- need to have precise theory predictions



need High Precision for Hard Processes!

#### HP2

#### need High Precision for Hard Processes!

predictions based on Leading Order (LO) in perturbation theory are not sufficient

#### need High Precision for Hard Processes!

predictions based on Leading Order (LO) in perturbation theory are not sufficient

LHC: many interesting processes lead to multi-particle  $(2 \rightarrow 3, 4, ...)$  final states, e.g.

$$pp \rightarrow q q H \rightarrow W^+W^- + 2$$
 jets,  $pp \rightarrow H + t\bar{t} \rightarrow b\bar{b} t\bar{t}$ ,...

#### HP2

#### need High Precision for Hard Processes!

predictions based on Leading Order (LO) in perturbation theory are not sufficient

LHC: many interesting processes lead to multi-particle  $(2 \rightarrow 3, 4, ...)$  final states, e.g.

$$pp \rightarrow q q H \rightarrow W^+W^- + 2$$
 jets,  $pp \rightarrow H + t\bar{t} \rightarrow b\bar{b} t\bar{t}$ ,...

to calculate them at NLO: HT2 (Hard Thinking for HEP Theorists)

#### HP2

#### need High Precision for Hard Processes!

predictions based on Leading Order (LO) in perturbation theory are not sufficient

LHC: many interesting processes lead to multi-particle  $(2 \rightarrow 3, 4, ...)$  final states, e.g.

$$pp \rightarrow q q H \rightarrow W^+W^- + 2$$
 jets,  $pp \rightarrow H + t\bar{t} \rightarrow b\bar{b} t\bar{t}$ ,...

to calculate them at NLO: HT2 (Hard Thinking for HEP Theorists)

⇒ better methods, more automation

#### **Automation**

### lots of progress recently!

automated subtraction for NLO real radiation

Frederix/Gehrmann/Greiner, Hasegawa/Moch/Uwer, Tevlin/Seymour, Gleisberg/Krauss 07-08

#### **Automation**

#### lots of progress recently!

- automated subtraction for NLO real radiation Frederix/Gehrmann/Greiner, Hasegawa/Moch/Uwer, Tevlin/Seymour, Gleisberg/Krauss 07-08
- new tools based on numerical implementation of unitarity cuts

Ossola/Papadopoulos/Pittau (CutTools), Berger/Bern/Dixon/Febres-Cordero/Forde/Ita/Kosower/Maître (BlackHat), Giele/Zanderighi (Rocket),

Ellis/Giele/Kunszt/Melnikov 07-08

#### **Automation**

#### lots of progress recently!

automated subtraction for NLO real radiation Frederix/Gehrmann/Greiner, Hasegawa/Moch/Uwer, Tevlin/Seymour, Gleisberg/Krauss 07-08

new tools based on numerical implementation of unitarity cuts

Ossola/Papadopoulos/Pittau (CutTools),
Berger/Bern/Dixon/Febres-Cordero/Forde/Ita/Kosower/Maître (BlackHat),
Giele/Zanderighi (Rocket),
Ellis/Giele/Kunszt/Melnikov 07-08

new developments within methods based on Feynman diagrams

Bredenstein/Denner/Dittmaier/Pozzorini,
Hahn/Ilana/Rauch (FeynArts/FormCalc/LoopTools),
Golem, Passarino et al., Yuasa et al. (GraceNLO), ...

# Methods for one-loop amplitudes

algebraic reduction

(pioneered by Passarino/Veltman)

generates factorial growth in complexity

# Methods for one-loop amplitudes

algebraic reduction

(pioneered by Passarino/Veltman)
generates factorial growth in complexity

fully numerical

(pioneered by D.Soper)

needs extraction of poles beforehand

# Methods for one-loop amplitudes

algebraic reduction

(pioneered by Passarino/Veltman)
generates factorial growth in complexity

fully numerical

(pioneered by D.Soper)

needs extraction of poles beforehand

unitarity-based ("string/twistor inspired")

(pioneered by Bern, Dixon, Dunbar, Kosower '94,

Britto, Cachazo, Feng, Witten '04,

Ossola, Papadopoulos, Pittau '06)

needs special treatment of rational parts

# algebraic reduction



non-trivial tensor structure

scalar 6-point function

$$= \sum_{i=1}^{6} b_i \qquad \dots \text{ factorial growth in complexity!}$$

# algebraic reduction



non-trivial tensor structure

scalar 6-point function

$$= \sum_{i=1}^{6} b_i \qquad \dots \qquad \text{factorial growth in complexity!}$$

reduction to set of basis integrals (4-, 3- and 2-point funcs.)

$$\mathcal{A} = C_4 + C_3 + C_2 + C_2 + \mathcal{R}$$

# reduction to scalar basis integrals

main problems with reduction based on Feynman diagrams:

- sheer complexity of the expressions
  - ⇒ slow programs

# reduction to scalar basis integrals

#### main problems with reduction based on Feynman diagrams:

- sheer complexity of the expressions
  - ⇒ slow programs
- reduction coefficients  $C_i$  contain inverse determinants of kinematic variables

("Gram determinants" detG)

if  $detG \rightarrow 0$  in certain phase space regions

⇒ numerical problems

one possible solution: semi-numerical method

[Binoth, Guillet, GH 00], [Binoth, GH, Kauer 03], [Binoth, Guillet, GH, Pilon, Schubert 05]

one possible solution: semi-numerical method

[Binoth, Guillet, GH 00], [Binoth, GH, Kauer 03], [Binoth, Guillet, GH, Pilon, Schubert 05]

- do tensor reduction numerically
- reduce to scalar integrals and use analytic expressions
  where inverse determinants are harmless ⇒ fast
- switch to numerical evaluation of boxes, triangles otherwise

#### one possible solution: semi-numerical method

[Binoth, Guillet, GH 00], [Binoth, GH, Kauer 03], [Binoth, Guillet, GH, Pilon, Schubert 05]

- do tensor reduction numerically
- reduce to scalar integrals and use analytic expressions where inverse determinants are harmless ⇒ fast
- switch to numerical evaluation of boxes, triangles otherwise
- formalism valid for massive and massless particles, arbitrary number of legs

#### one possible solution: semi-numerical method

[Binoth, Guillet, GH 00], [Binoth, GH, Kauer 03], [Binoth, Guillet, GH, Pilon, Schubert 05]

- do tensor reduction numerically
- reduce to scalar integrals and use analytic expressions where inverse determinants are harmless ⇒ fast
- switch to numerical evaluation of boxes, triangles otherwise
- formalism valid for massive and massless particles, arbitrary number of legs
- rational parts R are for free! complexity of expressions greatly reduced if R is projected out

# form factor representation

$$I_{N}^{n,\mu_{1}\dots\mu_{r}}(S) = \sum_{l_{1}\dots l_{r}\in S} p_{l_{1}}^{\mu_{1}} \cdots p_{l_{r}}^{\mu_{r}} A_{l_{1}\dots,l_{r}}^{N,r}(S) + \sum_{l_{1}\dots l_{r-2}\in S} \left[g^{\cdot \cdot} p_{l_{1}}^{\cdot} \cdots p_{l_{r-2}}^{\cdot}\right]^{\{\mu_{1}\dots\mu_{r}\}} B_{l_{1}\dots,l_{r-2}}^{N,r}(S) + \sum_{l_{1}\dots l_{r-2}\in S} \left[g^{\cdot \cdot} g^{\cdot \cdot} p_{l_{1}}^{\cdot} \cdots p_{l_{r-4}}^{\cdot}\right]^{\{\mu_{1}\dots\mu_{r}\}} C_{l_{1}\dots,l_{r-4}}^{N,r}(S)$$

# form factor representation

$$I_{N}^{n,\mu_{1}\dots\mu_{r}}(S) = \sum_{l_{1}\dots l_{r}\in S} p_{l_{1}}^{\mu_{1}} \cdots p_{l_{r}}^{\mu_{r}} A_{l_{1}\dots,l_{r}}^{N,r}(S)$$

$$+ \sum_{l_{1}\dots l_{r-2}\in S} \left[g^{\cdot \cdot} p_{l_{1}}^{\cdot} \cdots p_{l_{r-2}}^{\cdot}\right]^{\{\mu_{1}\dots\mu_{r}\}} B_{l_{1}\dots,l_{r-2}}^{N,r}(S)$$

$$+ \sum_{l_{1}\dots l_{r-4}\in S} \left[g^{\cdot \cdot} g^{\cdot \cdot} p_{l_{1}}^{\cdot} \cdots p_{l_{r-4}}^{\cdot}\right]^{\{\mu_{1}\dots\mu_{r}\}} C_{l_{1}\dots,l_{r-4}}^{N,r}(S)$$

important: more than two metric tensors  $g^{\mu\nu}$  never occur!

**reason:** for  $N \geq 6$ : simultaneous reduction of rank r and number of legs N

$$I_N^{n,\mu_1...\mu_r}(S) = -\sum_{j \in S} C_{j6}^{\mu_1} I_{N-1}^{n,\mu_2...\mu_r}(S \setminus \{j\})$$

$$S_{ij} = (r_i - r_j)^2 - m_i^2 - m_j^2$$

# reduction algorithm schematically

diagram generation (e.g. QGRAF, FeynArts)

$$A = \sum_{i} C_{i}^{\mu_{1} \dots \mu_{r}} I_{\mu_{1} \dots \mu_{r}}$$

$$\downarrow \downarrow$$

$$A = \sum_{\{l\}} f_l(p_i \cdot p_j, p_i \cdot \epsilon_j, \epsilon_i \cdot \epsilon_j) \{A_{\{l\}}^{N,r}, B_{\{l\}}^{N,r}, C_{\{l\}}^{N,r}\}$$

(Lorentz invariants × form factors)



golem95

numerical evaluation

reduction to scalar integrals

numbers (Laurent series in  $\epsilon$ )

# from tensor integrals to parameter integrals



# treatment of basis integrals



new: numerical integration based on one-dimensional parameter representation  $\Rightarrow$  fast and precise

# The GOLEM project and the golem95 program

#### golem95 code:

- calculates form factors for tensor integrals numerically
- master integrals valid for all kinematic regions, but only massless internal particles so far
- no restriction on masses of external particles
- ▶ box with all 4 legs off-shell: no one-dimensional integral representation so far ⇒ will always be reduced to scalar box

# The GOLEM project and the golem95 program

#### golem95 code:

- calculates form factors for tensor integrals numerically
- master integrals valid for all kinematic regions, but only massless internal particles so far
- no restriction on masses of external particles
- ▶ box with all 4 legs off-shell: no one-dimensional integral representation so far ⇒ will always be reduced to scalar box

#### Golem project:

- include automated diagram generation, combine with real radiation, produce cross sections see T.Binoth's talk
- combine with parton shower

## golem95: installation and structure

#### installation:

```
download from http://lappweb.in2p3.fr/lapth/Golem/golem95.html and unpack ./configure.pl [-install_path=mypath] [-compiler=mycompiler] make make install
```

### golem95: installation and structure

#### installation:

```
download from http://lappweb.in2p3.fr/lapth/Golem/golem95.html and unpack ./configure.pl [-install_path=mypath] [-compiler=mycompiler] make make install
```

#### golem95 subdirectories:

src: source files

doc: documentation

demos: 8 demo programs

test: user interface for tests etc.

### demo programs

### typing configure.pl produces:

Choose which demo program you want to run:

- 1. three-point functions
- 2. four-point functions
- 3. five-point functions
- 4. six-point functions
- 5. calculation of 4-photon helicity amplitudes
- 6. numerical stability demo:  $\det G \to 0$
- 7. numerical stability demo:  $\det S \to 0$
- 8. Golem ↔ LoopTools conventions

## demo 3: rank 5 five-point

#### choosing option 3 will produce the following output:

you have chosen option 3: five-point functions

The Makefile has been created

Please run:

make

./comp.exe

#### running comp.exe will prompt for the rank:

Choose what the program should compute:

- 0) form factor for five-point function, rank 0
- 1) form factor for five-point function, rank 3  $(z_1 z_2 z_4)$
- 2) form factor for five-point function, rank 5  $(z_1 z_2 z_3 z_4 z_5)$
- 3) form factor for diagram with propagator 3 pinched, rank 0
- 4) form factor for diagram with propagators 1 and 4 pinched, rank 0

#### choosing option 2 will produce the result in about

 $8 \times 10^{-3}$  seconds

the result written to test5point.txt looks as follows:

## demo 3: rank 5 five-point



$$S(1,3) = (p_2 + p_3)^2 = -3.$$

$$S(2,4) = (p_3 + p_4)^2 = 6.$$

$$S(2,5) = (p_1 + p_2)^2 = 15.$$

$$S(3,5) = (p_4 + p_5)^2 = 2.$$

$$S(1,4) = (p_1 + p_5)^2 = -4.$$

$$S(1,2) = p_2^2 = 0.$$

$$S(2,3) = p_3^2 = 0.$$

$$S(3,4) = p_4^2 = 0.$$

$$S(4,5) = p_5^2 = 0.$$

$$S(1,5) = p_1^2 = 0.$$

A factor  $\Gamma(1+\epsilon)\Gamma(1-\epsilon)^2/\Gamma(1-2\epsilon)\,(4\pi\,\mu^2)^\epsilon$  is factored out from the result.

result=  $1/\epsilon^2$  \* (0.000000000E+00 + I\* 0.000000000E+00)

 $+ 1/\epsilon * (0.000000000E+00 + I* 0.000000000E+00)$ 

+ (-.8615520644E-04 + I\* 0.1230709464E-03)

CPU time= 7.99900000000001E-003

#### demo 6: Gram determinants

- reduction  $N \ge 5 \to N = 4$ : inverse Gram determinants completely absent
- reduction of  $N \le 4$  tensor integrals: introduces spurious 1/det(G)

$$I_4^{n+2}(j_1;S) = \frac{1}{B} \left\{ b_{j_1} I_4^{n+2}(S) + \frac{1}{2} \sum_{j_2 \in S} S_{j_1 j_2}^{-1} I_3^n(S \setminus \{j_2\}) - \frac{1}{2} \sum_{j_2 \in S \setminus \{j_1\}} b_{j_2} I_3^n(j_1; S \setminus \{j_2\}) \right\}$$

$$I_4^{n+2}(j_1, j_2; S) \sim \frac{1}{B^2} , I_4^{n+2}(j_1, j_2, j_3; S) \sim \frac{1}{B^3} \dots$$

$$B = \det(G)/\det(S) (-1)^{N+1}$$

$$S_{ij} = (r_i - r_j)^2 - m_i^2 - m_j^2 ; G_{ij} = 2 r_i \cdot r_j$$

#### **Gram determinants**

to avoid spurious 1/det(G) terms: do not reduce

#### golem95:

define dimensionless quantity  $\hat{B} = B \times \text{(largest entry of S)}$ 

if  $\hat{B} < \hat{B}^{\mathrm{cut}}$ : switch to direct numerical evaluation

(default:  $\hat{B}^{\rm cut} = 0.005$ )

file demo\_detg.f90 contains example where  $\hat{B} \to 0$  in rank 3 box integral  $I_4^{n+2}(1,2,2;S)$  with two massive legs

## Real part for $B \rightarrow 0$



## Imaginary part for $B \rightarrow 0$



## demo 8: comparison to LoopTools

if all external legs are off-shell: master integrals IR finite

⇒ direct comparison to LoopTools possible

box integrals:

## demo 8: comparison to LoopTools

if all external legs are off-shell: master integrals IR finite

⇒ direct comparison to LoopTools possible

box integrals:

### pentagon integrals:

note: for  $N \geq 5$  metric  $g^{\mu\nu}$  can be expressed by external vectors, so definition of  $A_5, B_5, C_5$  not unique anymore

⇒ comparison of contracted tensor integrals rather than individual form factors

#### user-defined tests

#### if you would like to

- calculate certain selected numerators of a tensor form factor, or
- calculate all different numerators of a tensor form factor
- define the numerical point to be calculated
  - go to subdirectory test
  - edit the file param.input
  - define the numerical point in file momenta.dat
  - type perl maketest.pl

example: all possible form factors for rank two 6-point

#### user-defined tests

```
numerical point: (p_i = (E_i, x_i, y_i, z_i)):
p_1 = (0.5, 0., 0., 0.5)
p_2 = (0.5, 0., 0., -0.5)
p_3 = (-0.19178191, -0.12741180, -0.08262477, -0.11713105)
p_4 = (-0.33662712, 0.06648281, 0.31893785, 0.08471424)
p_5 = (-0.21604814, 0.20363139, -0.04415762, -0.05710657)
p_6 = (-0.2555428, -0.14270241, -0.19215546, 0.08952338)
```

### input parameters

- number of legs (only 3,4,5,6 are possible): 6
- rank: 2
- type of form factor: A, B or C (note: type B exists only for rank ≥ 2, type C exists only for rank ≥ 4): A
- labels of Feynman parameters in the numerator (separated by commas): example: put 2,2,3 for a rank 3 integral with  $z_2^2 z_3$  in the numerator put "all" if you want to calculate all possible numerators all
- name of the file containing the momenta for the numerical point to be calculated: momenta.dat
- label to distinguish different numerical points: 1

## **Summary**

we are on our way towards the automation of NLO calculations for multi-particle processes

## **Summary**

- we are on our way towards the automation of NLO calculations for multi-particle processes
- golem95 is a nice tool to have in the toolbox
  - numerically robust due to convenient basis integrals
  - can also be used as a library for master integrals
  - contains switch to compilation in quadruple precision
  - flag to calculate rational parts only
  - available at http://lappweb.in2p3.fr/lapth/Golem/golem95.html

## **Summary**

- we are on our way towards the automation of NLO calculations for multi-particle processes
- golem95 is a nice tool to have in the toolbox
  - numerically robust due to convenient basis integrals
  - can also be used as a library for master integrals
  - contains switch to compilation in quadruple precision
  - flag to calculate rational parts only
  - available at http://lappweb.in2p3.fr/lapth/Golem/golem95.html

#### ToDo:

- add basis integrals for internal masses
- public automated interface to amplitude generation
- combine with automated treatment of real radiation

#### Golem will evolve more and more towards automation!



...but be careful: Stanislaw Lem's Golem XIV was so advanced that he refused to interact with those "stupid humans" ...



## demo 7: scattering singularity

$$\det \mathcal{S} \sim (\det G)^2 \to 0$$

pentagon with  $s_5 \neq 0$ , else  $s_j = 0$ :

$$\det \mathcal{S} = 2 s_{12} s_{23} s_{34} (s_{15} s_{45} - s_5 s_{23})$$
box (1,23,4,5):
$$\det G = 2 s_{14} (s_{15} s_{45} - s_5 s_{23})$$

using momentum parametrisation for 1+4 → 2+3+5

$$\det \mathcal{S} = 2 s_{12} s_{23} s_{34} s_{14} p_{T,5}^2, \det G = 2 s_{14}^2 p_{T,5}^2$$

 $p_{T,5}$ : transverse momentum of particle 5 or the system 34 relative to the beam axis (z-axis) rotation of 2,3,5 around the z-axis is evaluated to check for stability in the limit  $p_{T,5} \to 0$ 

## scattering singularity



# N(N)LO wishlist for LHC (Les Houches 07)

| process $(V \in \{Z, W, \gamma\})$                 | relevant for            |             |
|----------------------------------------------------|-------------------------|-------------|
| 1. $pp \rightarrow ZZ$ jet                         | $tar{t}H$ , new physics | done        |
| <b>2.</b> $pp \rightarrow t \bar{t}  b \bar{b}$    | $t \overline{t} H$      | in progress |
| 3. $pp \rightarrow t\bar{t} + 2$ jets              | $t ar{t} H$             |             |
| $oldsymbol{4.} pp  ightarrow WWW$                  | SUSY trilepton          | done        |
| <b>5.</b> $pp 	o V  V  b \overline{b}$             | VBF, new physics        |             |
| <b>6.</b> $pp \rightarrow VV + 2$ jets             | VBF                     |             |
| 7. $pp \rightarrow V + 3$ jets                     | new physics             | in progress |
| 8. $pp 	o bar{b}bar{b}$                            | H, SUSY searches        | in progress |
| 10. $\mathcal{O}(\alpha^2 \alpha_s^3) \ gg \to WW$ | EW sector               | in progress |
| 11. NNLO for $t\bar{t}$                            | benchmark, H coupl.     | in progress |
| 12. NNLO to VBF, $Z/\gamma$ +j                     | H coupl., benchmark     | in progress |